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1 Introduction

In probability theory, Donsker’s theorem1 (also known as Donsker’s invariance
principle, or the functional central limit theorem), named after Monroe D.
Donsker, is a functional extension of the central limit theorem.

Let X1, X2, X3, . . . be a sequence of independent and identically distributed
(i.i.d.) random variables with mean 0 and variance 1. Let Sn =

∑n
i=1 Xi. The

stochastic process {Sn}n∈N is known as a random walk. Define the diffusively
rescaled random walk (partial-sum process) by

W (n)(t) =
S⌊nt⌋√

n
, t ∈ [0, 1].

The central limit theorem asserts that W (n)(1) converges in distribution to
a standard Gaussian random variable W (1) as n → ∞. Donsker’s invariance
principle extends this convergence to the whole function {W (n)(t)}t∈[0,1]. More
precisely, in its modern form, Donsker’s invariance principle states that: As ran-
dom variables taking values in the Skorokhod space D[0, 1], the random function
{W (n)} converges in distribution to a standard Brownian motion {W (t)}t∈[0,1]

as n → ∞.

1.1 Donsker-Skorokhod-Kolmogorov theorem for uniform
distributions.

Formal statement: Let Fn be the empirical distribution function of the se-
quence of i.i.d. random variables X1, X2, X3, . . . with distribution function F .
Define the centered and scaled version of Fn by

Gn(x) =
√
n(Fn(x)− F (x)),

indexed by x ∈ R. By the classical central limit theorem, for fixed x, the random
variable Gn(x) converges in distribution to a Gaussian (normal) random variable
G(x) with zero mean and variance F (x)(1− F (x)) as the sample size n grows.

1https://shorturl.at/oISWX
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1.2 Theorem (Donsker, Skorokhod, Kolmogorov):

The sequence of Gn(x), as random elements of the Skorokhod space D(−∞,∞),
converges in distribution to a Gaussian process G with zero mean and covariance
given by

cov[G(s), G(t)] = E[G(s)G(t)] = min{F (s), F (t)} − F (s),

F (t).
The process G(x) can be written as B(F (x)) where B is a standard Brownian

bridge on the unit interval.

2 Proof

Here there is an overview of the key steps involved in the proof.

1. Definition of the Empirical Process:

Define the empirical process Gn(x) as the centered and scaled version of the
empirical distribution function Fn(x) based on the sample X1, X2, . . . , Xn.

Gn(x) =
√
n(Fn(x)− F (x))

2. Central Limit Theorem (CLT) for Empirical Process:

Utilize the classical central limit theorem to establish that, for fixed x, the
random variable Gn(x) converges in distribution to a Gaussian (normal) random
variable G(x) as n → ∞.

3. Extension to the Skorokhod Space:

Extend the convergence result to the Skorokhod space D(−∞,∞), which is a
space of functions equipped with the topology of convergence in distribution.

4. Identification of the Limit Process:

Identify the limit process G(x) as a Gaussian process with zero mean and co-
variance given by cov[G(s), G(t)] = min{F (s), F (t)} − F (s), where F (t) is the
true distribution function.

5. Connection to Brownian Motion:

Show that the process G(x) can be expressed as B(F (x)), where B is a standard
Brownian bridge on the unit interval.
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3 Simulations

The JavaScript simulation2 provided is a visual representation of Donsker’s
Invariance Principle. Here’s an explanation of the simulation:

1. Parameters:

• numSteps: Number of steps in the random walk.

• numSimulations: Number of simulations to run.

2. Simulation:

• A simple random walk is generated for each simulation. At each step,
a random value of +1 or -1 is added to the current value.

• The empirical process is calculated, which is the cumulative sum of
the random walk values. This process represents the partial sums of
the random walk.

3. Plotting:

• For each simulation, a line plot is created to show the trajectory of
the random walk.

• Another line plot is created to show the corresponding empirical pro-
cess.

4. Brownian Motion: Additionally, a line plot for Brownian motion is in-
cluded for comparison. Brownian motion is a continuous stochastic pro-
cess and can be seen as a limit of the random walk when the number of
steps becomes very large.

5. Interpretation:

2http://wendy.altervista.org/donskertheorem.html
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• The simulation visually demonstrates how the trajectories of the ran-
dom walks and their corresponding empirical processes evolve over
time.

• As the number of steps increases, the empirical processes become
smoother and converge toward a limiting continuous process, resem-
bling Brownian motion. This aligns with Donsker’s Invariance Prin-
ciple.

6. Plot Interaction: The generated plot is interactive, can be zoomed in, pan,
and hover over the lines to inspect specific points.

In summary, the simulation illustrates the convergence of the empirical process
of a simple random walk to Brownian motion, showcasing a fundamental result
in probability theory known as Donsker’s Invariance Principle.

4


